Matrices en Python uso de Numpy

Numpy es la librería casi por defecto cuando hemos de tratar con matrices, y específicamente en el uso de big data por su menor consumo de tiempo de procesamiento computacional dando paso a una mayor cantidad de procesamiento, entonces en esta ocasión revisaremos las operaciones con matrices que se pueden realizar:

INSTALACIÓN

En primera instancia este tutorial asume que estás usando VSCODE  y que tu sistema operativo o distribución ya tiene instalado python, abrimos el terminal incorporado de VSCODE, abrimos el terminal y hacemos la siguiente instrucción:

pip install numpy

DECLARACIÓN DE UNA MATRIZ

Cuando hemos de usar numpy debemos de importar la librería en el top del fichero, entonces:

import numpy as np

 Esto significa que todo lo relacionado a la invocación de los métodos que pertenecen a numpy lo hemos de realizar haciendo “np.nombre_metodo“, como si métodos estáticos se trataran en su sintaxis (java ¿huh?).

Ahora bien, ¿Cómo se implementa una matriz en un lenguaje de programación?, pues esta se implementa a través de los arreglos, un arreglo es una estructura de datos que nos permiten almacenar elementos que dependiendo del lenguaje pueden ser del mismo tipo o no, java por ejemplo permite los arreglos de un mismo tipo y solo de primitivos si son de tipo referenciados pues tienen otros nombres; sin embargo, python considera que los elementos que conformen un arreglo no necesariamente tienen que ser todos del mismo tipo de dato (no hacemos referencia a primitivos pues todo es un objeto en python).

Python agrupa los arreglos de la siguiente forma:

Para las matrices en numpy se organiza la estructura de forma muy similar a las listas, aunque no son lo mismo, entonces hecha esta aclaración, una matriz se define de la siguiente forma:

a=np.array([1,2,3])#1 dimensión
b=np.array([[1,2,3],[4,5,6]]) #2 dimensiones
c=np.array([[1,2,3],[4,5,6],[7,8,9]]) # 3 dimensiones

El objeto principal en numpy es ndarray el cual representa un arreglo que puede ser multidimensional y es homogéneo en términos del tipo de objeto. Una de las formas de crear una matriz se realiza con el método array, y que su constructor es de la siguiente forma:

numpy.array(objectdtype=Nonecopy=Trueorder='K'subok=Falsendmin=0)

Aunque los demás términos ya están descritos en su definición, el parámetro obligatorio es un objeto el cual tal como se ha mostrado divide sus dimensiones siguiendo una estructura tipo lista. Podemos también transformar desde listas o tuplas (bueno en esencia es un objeto ¿no?), entonces sea:

arreglo=[1,2,3,4,5,6,7,8,9]
arreglo2=(1,2,3,4,5,6,7,8,9)

x=np.array(arreglo)
y=np.array(arreglo2)

y=np.reshape(y,(3,3))
x=np.reshape(x,(3,3))

Si ingresamos una lista o tupla, esta quedará como una matriz de una sola dimensión, si deseamos dar un ordenamiento específico como una matriz de 3×3, debemos de hacer uso del método reshape:

numpy.reshape(anewshapeorder='C')

Este método nos devuelve una matriz con el ordenamiento deseado, y es tal como la hemos usado, el tipo de orden debe indicar a través de una tupla, en nuestro caso de (3,3). Dicho esto como parte básica para la creación de las matrices, vamos a realizar las operaciones con ellas.

OPERACIONES BÁSICAS

Sean 2 matrices de 2×2 A y B que las obtenemos a través de listas, pero vamos a generarlo todo en una sola línea:

a=[1,2,3,4,]
b=[7,8,9,10]

a=np.reshape(np.array(a),(2,2))
b=np.reshape(np.array(b),(2,2))

La suma entonces:

c=b+a
print(c)

La resta:

c=b-a

Podemos hacer que todos los elementos de la matriz se eleven a un exponente determinado de la siguiente forma:

c=b**exponente
c=np.power(b,exponente)

Multiplicación

Las matrices tienen una particularidad al momento de la multiplicación, ya que siguen la forma de filas por columna, para realizarla podemos hacerlo de dos formas:

c=np.dot(a,b) #recibe las 2 matrices a multiplicar
d=a@b

La División

¿Por qué no tomamos la división?, pues por teoría la división de una matriz no es una operación que se realice como con los números reales, una división en una matriz se puede determinar a través de la multiplicación con la inversa de la matriz que estaría en el denominador, es decir:

A.B-1

Podemos obtener la inversa de una matriz a través del método inv, el cual pertenece a la subclase linalg, inv recibe como parámetro a la matriz  y devuelve su matriz inversa, entonces:

e=np.linalg.inv(b)

Ahora bien haciendo uso de las matrices de ejemplo a y b:

f=np.dot(a,np.linalg.inv(b))

DETERMINANTE DE UNA MATRIZ 

El determinante de una matriz podemos hallarlo haciendo uso del método det, que tiene como parámetro la matriz cuadrada que se desea hallar su determinante (no olvidar que el determinante siempre es un escalar y nunca un vector):

determinante=np.linalg.det(a)

MATRIZ TRANSPUESTA

La transpuesta de una matriz es la transformación en que las filas pasan a las columnas y viceversa, para realizar la transpuesta debemos de usar el método transpose, este es un método asociado directamente a la matriz, entonces:

g=a.transpose()

Por lo pronto es todo lo que podemos observar de las operaciones con matrices

 

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s